Inicio

Mamut Matemáticas Porcentaje

Mamut Matemáticas Porcentaje
68 páginas
(incluye la clave)

Hojas de muestras (PDF)
Índice y introducción
¿Qué porcentaje?
Porcentaje de un número
Rebajas (descuentos)
Porcentaje de cambio
Repaso


Comprar un descargo
archivo PDF

Precio: $3.50 USD



Comprar libro impreso

$10.60 USD, blanco/negro



Más información sobre opciones de pago

Mamut Matemáticas Porcentaje enseña a los estudiantes a entender el concepto de por ciento, a calcular el porcentaje de un número, a calcular rebajas y impuesto de venta, a dibujar gráficos circulares, a diferenciar entre un porcentaje de cambio y un porcentaje de comparación y a saber cómo calcular ambos. El texto es adecuado para niños de 6o grado a 8o grado, en la que muchas veces se califica “escuela media.”

El concepto matemático de porcentaje añade al entendimiento anterior del estudiante de fracciones y decimales. Específicamente, estudiantes ya deberían estar familiarizados con la idea de hallar una parte fraccionaria de una totalidad (“¿Qué es 3/4 de $240?”). Estudiantes que han usado los libros de Mamut Matemáticas han estado practicando ese concepto desde cuarto grado. Una de las razones que yo he diseñado los libros para los grados anteriores así que recalcan tanto hallar una parte fraccionaria de una totalidad en las lecciones para enseñar división y fracciones es específicamente para preparar el terreno para presentar el concepto de porcentaje. Si el estudiante ha dominado cómo hallar una parte fraccionaria de una totalidad y puede convertir fracciones en decimales, entonces aprender a resolver problemas con porcentaje no debería ser difícil.

La primera lección, Porcentaje, presenta el concepto de un porcentaje como la fracción 1/100, y el estudiante practica escribiendo fracciones y decimales como porcentajes. La siguiente lección, ¿Qué porcentaje?, se diseña para consolidar la idea de responder a preguntas que preguntan “¿Qué porcentaje (o “¿Cuánto por ciento”) de X es Y?” Estudiantes aprenden a escribir la razón que se pide primero como una fracción y después a convertir esa fracción en un porcentaje.

La lección que sigue, Porcentaje de un número, enseña atajos para calcular rápidamente los porcentajes “en tu mente.” Algunas veces estas técnicas se llaman “matemáticas mental.” Por ejemplo, estudiantes aprenden a hallar 10% de $400 por dividir $400 por 10. En la siguiente lección, la cual es sobre el mismo tema, estudiantes aprenden a hallar un porcentaje de una cantidad por multiplicar por el decimal equivalente. Por ejemplo, para hallar 17% de 45 km, estudiantes multiplican 0.17 × 45 km. Algunos problemas también incluyen el uso de una calculadora.

Las siguientes dos lecciones presentan calcular porcentajes de rebajas y impuesto de venta, las cuales son aplicaciones importantes de porcentajes en la vida cotidiana. La siguiente lección, Práctica con porcentaje, enseña estudiantes a diferenciar claramente entre problemas que piden un porcentaje conocido de una cantidad (“¿Qué es 70% de $380?”) y problemas donde el porcentaje es desconocido (“¿Qué porcentaje de $380 es $70?”).

También hay una lección opcional con el titulo “Preguntas al revés” con porcentaje, donde estudiantes necesitan hallar la cantidad total cuando se da una cantidad parcial y qué porcentaje esa cantidad es de la totalidad. Por ejemplo: “Trescientos veinte estudiantes, o 40% del cuerpo estudiantil, toman clases adicionales de educación física. En total, ¿cuántos estudiantes hay en el cuerpo estudiantil?”

Hasta aquí en el texto, toda el material ha usado porcentajes enteros. Ahora sigue una lección que presenta cálculos con décimos de un por ciento (cantidades como 13.4%). De esta lección en adelante, las lecciones continuarán a usar décimos de un por ciento. En Razones, fracciones y porcentajes comparamos esas tres maneras de expresar las mismas relaciones entre miembros de un grupo. En la siguiente lección, estudiantes estudian cómo hacer un gráfico circular.

El último tema importante es porcentaje de cambio, lo cual se trata en una secuencia de tres lecciones. El concepto de porcentaje de cambio trata aumentos y reducciones de porcentajes en cantidades (especialmente precios). Por ejemplo: “Si un boleto de avión que cuesta $120 aumenta ahora 10%, ¿cuánto sería el precio nuevo?” Estudiantes también aprenderán cómo hallar un porcentaje de cambio desconocido cuando se saben las cantidades originales y nuevas. Por ejemplo, “Si una camisa costaba $24 y ahora está rebajada a $18, ¿de cuánto por ciento era la rebaja?”

Relacionada con porcentaje de cambio, hay una lección sobre Comparaciones con porcentaje. Estudiantes aprenden a resolver comparaciones involucrando porcentaje (tal como cuánto por ciento más (o menos) una cosa es que otra) por aplicar conceptos que aprendieron en hallar porcentaje de cambio y a diferenciar claramente entre los cuatro tipos de preguntas de comparación que se pueden preguntar.

El texto concluye con una lección de repaso minucioso de todos los conceptos que se enseñaron en las otras lecciones.


Unos ejemplos de como este libro enseña los temas relacionados con porcentaje, por favor véase estos videos mios de Youtube. Estos videos están basados en las lecciones en el libro, y se los puede usar con el libro.

¿Qué significa el "porciento"? Y cómo cambiar fracciones en porcentajes.


Hallar porcentajes de cantidades usando matemáticas mental.


Hallar porcentajes de cantidades usando decimales (para sacarlos con una calculadora).


Problemas que piden el porcentaje.




Paquete de TODOS los libros Mamut Matemáticas: Puede conseguir TODOS los libros listados en este sitio web por $99 USD (un descargo) o por $104 en un CD (más el envio). El precio de comprar todos los libros sin descuento sería $148.05, entonces esto le da un descuento de 33%.


Mira un video de mi grupo favorito, 24K Gold Music:



Contactar       Quién soy yo       Boletín       Mis libros en inglés      

© 2006-2014 Maria Miller